A systemd primer

Pat Riehecky Scientific Linux, Fermilab July 2014

Getting a few things out of the way

- Lots of people feel strongly about systemd
- Systemd in SL
 - It is the default init system for SL7
 - It is not available for SL5 or SL6
 - This follows upstream

Systemd is a system/service manager Sysvinit is a 'script runner'

Understanding this difference will help you understand its behavior

Systemd is an application and toolkit Sysvinit is neither

Understanding this difference will help you work with it, rather than against it.

Systemd knows about your system Sysvinit doesn't want to

Understanding this difference will help you understand its benefits

Systemd has systemctl Sysvinit has chkconfig and service

service sshd start == systemctl start sshd.service chkconfig sshd on == systemctl enable sshd.service

- Sysvinit
 - Run 'start' script on runlevel
 - Run 'stop' script on runlevel

- Systemd
 - Run 'start' command if needed:
 - Required for other service
 - Required for 'runlevel'
 - Abnormal termination
 - Dbus trigger
 - Run 'stop' command if needed:
 - Required for 'runlevel'
 - Dbus trigger

- Sysvinit
 - Output
 - STDOUT
 - STDERR
 - Maybe syslog too
 - Application errors
 - Maybe /var/log/messages

- Systemd
 - Output
 - Systemd-journal
 - And to syslog too
 - Application errors
 - journalctl -u sshd.service
 - /var/log/mesages

Systemd Benefits

- Service tracking
- Dependency tracking
- Socket tracking
- Automated respawns
- Unified reporting
- Automatic CGroup assignment

- A fully exposed API
- Simple service definitions
- Simple parameter overrides
- Users can make and manage their own services

A systemd unit file: sshd.service

```
[Unit]
```

Description=OpenSSH server daemon

After=syslog.target network.target auditd.service

Documentation=man:sshd(8)

[Service]

EnvironmentFile=/etc/sysconfig/sshd

ExecStartPre=/usr/sbin/sshd-keygen

ExecStart=/usr/sbin/sshd -D \$OPTIONS

ExecReload=/bin/kill -HUP \$MAINPID

KillMode=process

Restart=on-failure

RestartSec=42s

[Install]

WantedBy=multi-user.target

This does everything you found in /etc/init.d/sshd and adds all the systemd features

A systemd unit file (part 1)

```
[Unit]
Description=OpenSSH server daemon
After=syslog.target network.target auditd.service
Documentation=man:sshd(8)
```

- The [unit] section describes the item as a whole
- 'After' is a list of things which must be completed before this can be started
- 'Documentation' is provided to the admin/user via
 - systemctl help sshd.service

A systemd unit file (part 2)

```
[Service]
EnvironmentFile=/etc/sysconfig/sshd
ExecStartPre=/usr/sbin/sshd-keygen
ExecStart=/usr/sbin/sshd -D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s
```

- The [service] section describes the attributes of the service
- EnvironmentFile is imported into the runtime environment of the service
- ExecStartPre is run before ExecStart and should return 0 before ExecStart is run
- ExecStart is run to start the service
- ExecReload is run to reload the service's configuration
- KillMode describes how to kill this service's processes
- Restart will run ExecStart if the process exits before being stopped by systemd
- RestartSec is the delay between when the process ends and when it is restarted

A systemd unit file (part 3)

[Install]
WantedBy=multi-user.target

- The [Install] section describes the behavior of the service, relating to how it is loaded by systemd
- WantedBy lists systemd elements that are 'incomplete' until they've reviewed this unit.
 - So, multi-user.target is 'incomplete' until it has checked to see if sshd.service is enabled or disabled and acted upon that information.

Adding/Changing systemd units

Systemd units are defined or inherit settings in a clear work flow

- 1) /usr/lib/systemd/system/*
- 2) /run/systemd/system/*
- 3) /etc/systemd/system/*

So, a service defined at (1) can have its values altered at (2) and those values can be further altered at (3) with the end result being any unchanged values from a lower entry kept by the higher one.

What?

Changing systemd units: an example

/usr/lib/systemd/service/mariadb.service

[Unit]

Description=MariaDB database server

After=syslog.target network.target

[Service]

Type=simple

User=mysql

Group=mysql

ExecStart=/usr/bin/mysqld safe

PrivateTmp=true

[Install]

WantedBy=multi-user.target

/etc/systemd/system/mariadb.service

[service]

User=mariadb

Group=nobody

LimitNOFILE=1000

The files in /usr/lib come from the RPM and will be replaced.

The files in /etc/systemd come from you and will NOT be replaced

Socket Management

- inetd/xinetd are gone
 - The only thing they provided apart from sysvinit was a network socket
- Systemd now provides this via '.socket' units
 - Each .socket unit requires a .service unit too

Rsyncd.service

[Unit]

Description=remote file copy program daemon

ConditionPathExists=/etc/rsyncd.conf

Rsyncd.socket

[Unit]

Description=Rsync Server Socket

Conflicts=rsyncd.service

[Service]

EnvironmentFile=/etc/sysconfig/rsyncd

ExecStart=/usr/bin/rsync --daemon "\$OPTIONS"

[Socket]

ListenStream=873

Accept=yes

[Install]

WantedBy=multi-user.target

[Install]

WantedBy=sockets.target

Socket Management

To start the rsyncd socket simply run: systemctl start rsyncd.socket

To start the rsyncd socket on boot run: systemctl enable rsyncd.socket

Compare to ssh:
systemctl start sshd.service
systemctl enable sshd.service

Non-root service management

- Non-root users can run services
 - This has always been true.
 - Just pick a port above 1024 and bind.
- Systemd makes this easy
 - Uses same config syntax as normal, but different locations
 - /usr/lib/systemd/user/*
 - /run/systemd/user/*
 - /etc/systemd/user/*
 - \$HOME/.config/systemd/user/*
 - \$XDG_CONFIG_HOME/systemd/user/*
 - Simply set systemctl to 'user' mode
 - systemctl --user start someuser-vncserver.service

Reviewing log files

- On SL6, you find the log files and read them
- On SL7, you can simply ask:
 - journalctl -u sshd.service
 - Want the output in .json format, just add -o json
 - journalctl --since yesterday -u sshd.service
 - journalctl --until 2014-07-29
 - Want to read the log files, they are still there right where you'd expect

• SL6

service sshd status

openssh-daemon (pid 2715) is running...

• SL7

systemctl status sshd.service

sshd.service - OpenSSH server daemon

Loaded: loaded (/usr/lib/systemd/system/sshd.service; enabled)

Active: active (running) since Mon 2014-05-12 18:01:24 CDT; 2 months 11 days

ago

Docs: man:sshd(8)

Main PID: 1425 (sshd)

CGroup: /system.slice/sshd.service

1425 /usr/sbin/sshd -D

Jul 23 17:36:39 test.fnal.gov sshd[17902]: Authorized to root, krb5 principal csieh@FNAL.GOV (krb5_kuserok)

Jul 23 17:36:39 test.fnal.gov sshd[17902]: Accepted gssapi-with-mic for root from 131.225.122.34 port 58024 ssh2

• SL6

chkconfig --list sshd

o:off 1:off 2:on 3:on 4:on 5:on 6:off

SL7
systemctl is-enabled sshd.service
enabled
echo \$?
0

For more information

- http://www.freedesktop.org/wiki/Software/systemd/
 - Especially the 'systemd for Administrators' series
- RHEL7 System's Administrators Guide
 - Section III. Infrastructure Services
- https://access.redhat.com/videos/403833
- https://access.redhat.com/videos/898503
- https://access.redhat.com/videos/898473